OR07 – Nickel-Catalyzed C-3 Direct Arylation of Pyridinium Ions for the Synthesis of 1-Azafluorenes

Jean-Nicolas Desrosiers, a, Xudong Wei, a, Osvaldo Gutierrez, b Jolaine Savoie, a Bo Qu, a Xingzhong Zeng, a Heewon Lee, a Nelu Grinberg, a Nizar Haddad, a Nathan K. Yee, a Frank Roschangar, a Jinhua J. Song, a Marisa C. Kozlowski, b Chris H. Senanayake a

a Department of Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT, 06877, USA
b Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA

E-mail: nick.desrosiers@boehringer-ingelheim.com

The direct arylation of pyridine derivatives using non-precious catalysts is underdeveloped but highly desirable due to its efficiency to access important motifs while being extremely cost-effective. An unprecedented nickel-catalyzed C-3 direct arylation of pyridinium ions was developed to provide a new approach to valuable 1-azafluorene pharmacophore frameworks. This transformation is accomplished using air-stable nickel catalyst precursors and tolerates a variety of substituents. Computational studies were performed to further understand the unique reactivity of the pyridinium ions under these conditions and the reaction pathway which leads to the products obtained.