OR09 – Biomimetic Nitrene Transfer from Nitrosoarenes to Phenols

Mohammad S. Askari and Xavier Ottenwaelder*

Department of Chemistry and Biochemistry, Concordia University, Montréal, QC, Canada H4B 1R6

E-mail: dr.x@concordia.ca

The formation of dopaquinone during melanogenesis, catalyzed by the ubiquitous enzyme tyrosinase, involves the oxygenation of a phenolic C–H bond via a side-on peroxodicopper(II) species made by reaction between Cu(I) and O₂ at 25 °C. Performing model Cu(I)/O₂ reactions in solution, however, leads to complexes that are thermally unstable (~80 °C) and difficult to study. By substituting O₂ for isoelectronic nitrosoaryl compounds (Ar–N=O), the chemistry is similar but the ensuing Cu/nitrosoaryl complexes are stable at room temperature, and are thus more easily characterized and used.¹ Upon reaction with a phenolate, nitrene transfer occurs cleanly to yield a Cu-iminoquinone complex, which releases an aminophenol under reductive work-up (Scheme).² This reaction is analogous to the formation of quinones in Cu/O₂ chemistry, and comparison with our mechanism of the catalytic aerobic ortho-oxygenation of phenols³ provides hints on how to further develop this one-step C–H bond amination.

References