OR17 – Functional and Structural Diversity in Catalytic C–H Functionalization: Progress with α-alcoxylated Cinnamic Acids and Arylidene Imidazolones

Jean-Baptiste Rouchet, Mickaël Muselli, Cédric Schneider, Christine Baudequin, Laurent Bischoff and Christophe Hoarau*

Institut de Chimie Organique Fine (IRCOF) associé au CNRS (UMR COBRA 6014)
INSA and University of Rouen, Mont Saint Aignan, 76131, France

E-mail: christophe.hoarau@insa-rouen.fr

The two past decades have seen the establishment of several synthetic methodologies of transition metal-catalysed direct C–H bond functionalization of major classes of heterocycles and dedicated mainly to standard substitutions. This young field of chemistry goes now to a second phase of maturing towards structural and functional diversity to meet directly a strong echo in natural product, pharmaceutical and material sciences. In this context, α-alkoxyxlated cinnamic acids and 4,4'-arylidene imidazolones have been evaluated to propose original access towards heteroarylated vinylethers1 as well as famous GFP and Kaede protein fluorophores.2,3

References